60 research outputs found

    Dynamic, Task-Related and Demand-Driven Scene Representation

    Get PDF
    Humans selectively process and store details about the vicinity based on their knowledge about the scene, the world and their current task. In doing so, only those pieces of information are extracted from the visual scene that is required for solving a given task. In this paper, we present a flexible system architecture along with a control mechanism that allows for a task-dependent representation of a visual scene. Contrary to existing approaches, our system is able to acquire information selectively according to the demands of the given task and based on the system’s knowledge. The proposed control mechanism decides which properties need to be extracted and how the independent processing modules should be combined, based on the knowledge stored in the system’s long-term memory. Additionally, it ensures that algorithmic dependencies between processing modules are resolved automatically, utilizing procedural knowledge which is also stored in the long-term memory. By evaluating a proof-of-concept implementation on a real-world table scene, we show that, while solving the given task, the amount of data processed and stored by the system is considerably lower compared to processing regimes used in state-of-the-art systems. Furthermore, our system only acquires and stores the minimal set of information that is relevant for solving the given task

    Embedded Vision Systems: A Review of the Literature

    Get PDF
    Over the past two decades, the use of low power Field Programmable Gate Arrays (FPGA) for the acceleration of various vision systems mainly on embedded devices have become widespread. The reconfigurable and parallel nature of the FPGA opens up new opportunities to speed-up computationally intensive vision and neural algorithms on embedded and portable devices. This paper presents a comprehensive review of embedded vision algorithms and applications over the past decade. The review will discuss vision based systems and approaches, and how they have been implemented on embedded devices. Topics covered include image acquisition, preprocessing, object detection and tracking, recognition as well as high-level classification. This is followed by an outline of the advantages and disadvantages of the various embedded implementations. Finally, an overview of the challenges in the field and future research trends are presented. This review is expected to serve as a tutorial and reference source for embedded computer vision systems

    Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat

    Get PDF
    Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention

    Predicting Eye Fixations on Complex Visual Stimuli Using Local Symmetry

    Get PDF
    Most bottom-up models that predict human eye fixations are based on contrast features. The saliency model of Itti, Koch and Niebur is an example of such contrast-saliency models. Although the model has been successfully compared to human eye fixations, we show that it lacks preciseness in the prediction of fixations on mirror-symmetrical forms. The contrast model gives high response at the borders, whereas human observers consistently look at the symmetrical center of these forms. We propose a saliency model that predicts eye fixations using local mirror symmetry. To test the model, we performed an eye-tracking experiment with participants viewing complex photographic images and compared the data with our symmetry model and the contrast model. The results show that our symmetry model predicts human eye fixations significantly better on a wide variety of images including many that are not selected for their symmetrical content. Moreover, our results show that especially early fixations are on highly symmetrical areas of the images. We conclude that symmetry is a strong predictor of human eye fixations and that it can be used as a predictor of the order of fixation

    Combining eye fixation and context-directed saliency for attentive object segmentation

    No full text
    corecore